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ABSTRACT 

In this thesis we present an algorithm for the precise determination of the Mie 

extinction efficiency parameter. The mathematical representation of the Mie parameters is 

in the form of an infinite series, and any technique that could be found to accelerate the 

convergence of the Mie series would have great commercial and military application. 

Results are presented that show the comparison of the rate of convergence obtained by 

directly summing the individual terms of the extinction efficiency parameter and the rate 

obtained using an existing series acceleration technique. It was found that the acceleration 

method we employed, known as the Levin method of series transformation, proved 

unsuccessful in accelerating the convergence of the Mie series. However, other 

acceleration techniques exist and should be explored. 
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I. INTRODUCTION 

Mie scattering is the scattering of electromagnetic radiation by primarily spherical 

particles whose diameters are comparable to the wavelength of the incident radiation 

[Ref. 1: p. 303]. In nature, we see this manifested as the white appearance of clouds. Due 

to the distribution of particle sizes in the clouds, the cumulative effect of the Mie scattered 

light waves on the water droplets is that the whole spectrum of scattered radiation 

combines to make the cloud appear white.    In other scenarios which involve the direct 

use of modern technology, Mie scattering has many applications where it is of vital 

importance to have a highly efficient and reliable algorithm for signal processing and for 

analyzing the properties of Mie scattered waves. A few examples include the reflection of 

a radar signal off of a cloud of dispersed particles and the absorption and scattering of 

radiation from soot particles in the atmosphere [Ref. 2]; Mie scattering as a technique for 

the sizing of air bubbles [Ref. 3]; and for remote sensing applications. Further applications 

can be found in fields as diverse as astrophysics [Refs. 4 - 5], physical chemistry [Refs. 6- 

7], and a unique style of painting that employs the Mie scattering phenomenon [Ref. 8]. 

In order to determine the amplitude, extinction efficiency, or scattering efficiency 

of an electromagnetic wave that has undergone Mie scattering, it is necessary to compute 

the mathematical representation of these quantities, or Mie parameters, each of which is 

analytically represented by an infinite sum. For the purpose of this thesis research, our 

attention has been focused on calculating the Mie parameter known as the extinction 



efficiency factor, or Qext, which describes the total effect of scattering and absorption in 

removing radiation from the incident beam. 

As will be shown later in Chapter IV, the number of terms required for the infinite 

series to converge numerically to a given accuracy is directly proportional to the ratio 

between the wavelength of the incident radiation and the circumference of the scattering 

particle. The thrust of this thesis research has been to determine if this infinite series can 

be caused to converge in dramatically fewer iterations through the utilization of a series 

acceleration technique.   The basic idea is to transform the Mie series into another series 

that converges faster. While numerous series acceleration methods are known, one of the 

most powerful is known as the Levin method [Ref. 9: p. 35]. The ultimate goal of this 

thesis research has been to determine if the Levin method can significantly accelerate the 

convergence of the Mie series. 

As an example of the power of the Levin method (detailed in chapter 3), consider 

the alternating harmonic series that represents the natural logarithm of 2, namely, 

m-ftf-H-i... (i) 

The convergence of this series is extremely slow. By summing the individual terms of 

Eq. (1), over a million and a half terms must be taken to achieve an accuracy of six digits: 

1,565,239 terms to be exact. The C code used to determine this value and the program 

output are included as Appendices A and B, respectively. By employing the Levin 

method, however, the same degree of numerical accuracy can be reached after only six 

iterations! The ANSI C code for the Levin method operating on the alternating harmonic 



series is included as Appendix C. After the fifteenth term of the Levin method is reached, 

the accepted value of accuracy out to the sixteenth digit is obtained [Ref. 10: p. 113]. 

This is an astounding reduction of computer processing time and is an amazing 

demonstration of the power of the Levin method of series acceleration. (We note that, to 

obtain eight digit accuracy by straightforward summation of the series would require over 

one hundred million terms; nine digit accuracy was effectively unattainable using the 

UNIX system resources available for this research.) Table 1 shows a comparison of the 

partial sum obtained from Eq. (1) and those calculated with the Levin method. As a 

further comparison, the plot shown in Fig. 1 was produced to show the relative speed (i.e., 

number of iterations required) with which the Levin method and the brute force method of 

summing the individual terms of the alternating harmonic series converge to 99 

ln2 = 0.6931471805599453 

Iterations Partial Sum Levin Result 
1 1.000000 1.0000000000000000 
2 0.500000 0.6666666666666666 
3 0.833333 0.6944444444444444 
4 0.583333 0.6931372549019608 
5 0.783333 0.6931439393939393 
6 0.616667 0.6931474019283136 
7 0.759524 0.6931471777900349 
8 0.634524 0.6931471800150043 
9 0.745635 0.6931471806012293 
10 0.645635 0.6931471805592415 
11 0.736544 0.6931471805598542 
12 0.653211 0.6931471805599532 
13 0.730134 0.6931471805599452 
14 0.658705 0.6931471805599454 
15 0.725372 0.6931471805599453 

Table 1. Levin Method on Logarithm of 2. 
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Figure 1. Levin Method vs. Infinite Series for ln(2) 



percent of the correct value of ln(2). Appendices D through F show the pertinent ANSI C 

and Matlab code. Note that the Levin method required only three terms to reach 99 

percent of the value of ln(2), while summing the individual terms of the series required 

sixty-five terms. As a final comparison, the time required to reach six digits of accuracy 

using the brute force method was determined (Appendices A and B), and the code used in 

Appendix C was altered to determine the number of times the Levin method could reach 

the same degree of accuracy in the same time span (11.7 seconds). The value obtained 

was approximately 20,000, indicating that in this instance the Levin method is about 

20,000 times faster than summing the individual terms of the infinite series. 

In light of the preceding example, the question arises as to whether the Levin 

method can accelerate the Mie series. A computer program was written to calculate the 

individual terms of the infinite series representation of the Mie parameter Qext and to 

determine the number of these terms required for the series to converge to an accuracy of 

one part in 108. Next, the Levin method was applied to this infinite series, and the number 

of iterations of the Levin method required to achieve a similar accuracy was likewise 

determined. A comparison of these two results showed that the Levin method did not 

succeed in accelerating the convergence of the Mie series. In fact, the number of 

iterations required for the Levin method to converge was comparable to that obtained by 

simply summing the infinite series representation of the Mie parameter. Considering the 

algorithm which the Levin method utilizes, this method when applied to the Mie series will 

actually result in increased processor time. Although the Levin method proved 



unsuccessful in accelerating the convergence of the Mie series, further research in this area 

is still needed as there are other series acceleration methods worth exploring 

[Ref. 11: p. 56]. 

In the next section, we discuss the relevant Mie parameters and the infinite series 

for computing the extinction coefficient. In Chapter III we discuss the Levin convergence 

acceleration method. In Chapter IV we discuss our results for applying the Levin method 

to the Mie series. 



II. THE MIE SCATTERING PARAMETERS 

A.       BACKGROUND 

There are four basic Mie scattering parameters. The first two pertain to the 

scattering amplitude and describe the complex amplitudes of the perpendicular and parallel 

components (with respect to the scattering plane) of the electric field vector. The third 

Mie parameter is the scattering efficiency factor, while the fourth parameter is the 

extinction efficiency factor. All four of these expressions are given in dimensionless terms, 

and the evaluation of these four basic functions relies on the proper evaluation of four 

coefficients: the Mie coefficients a„ and b„, and the angular coefficients nn and r„. 

These four expressions can be described using three basic parameters: a 

dimensionless size x of the scattering sphere, an index of refraction m (usually complex), 

and a scattering angle 0 (relative to the forward direction). The dimensionless size 

parameter x is given by 

x = fo _ (?^L\r _ circumference of sphere 
\ A> ) wavelength ' ^ ' 

where k = 2n/A is the wave number, r is the radius of the sphere, and A is the 

wavelength of the incident radiation. The complex index of refraction m is given by 

m=u-Ki , (3) 

where v is the real part of the index of refraction and K is the imaginary part. A complex 

refractive index indicates an absorbing sphere, such as soot. A purely real index of 



refraction is indicative of a non-absorbing sphere; for the purpose of this thesis research, 

only cases of purely real refractive index were considered. 

B.        SCATTERING AMPLITUDE PARAMETERS 

Let the electric field vector amplitude of the scattered radiation field be given by 

Asc. This radiation field can in turn be expressed in terms of the scalar perpendicular and 

parallel components A\ and A2.   We can define dimensionless, complex amplitudes Si and 

S2 by multiplying the amplitudes A\ and A2 by the free-space propagation constant k, 

which in turn can be represented by an infinite converging series [Ref. 12: p. 13]: 

kA2 ^ S2(m,x,ß) = S-T^^.W + ^r.W}   • (4b) 

The Mie coefficients a„ and b„ are functions of the index of refraction m and the 

size x, while the angular coefficients nn and r„ are functions of j^=cos6 only. The latter 

coefficients are defined in terms of Legendre polynomials and their derivatives. The 

coefficients a„ and b„ are functions of spherical Bessel functions of the first, second, and 

third kind, and can be expressed in a variety of ways. 

C.        SCATTERING EFFICIENCY AND EXTINCTION PARAMETERS 

It can be shown that the differential scattering cross section for unit incident flux is 

da(m, x,0) = \ Asc ■ A*sc{m, x, &)dco   , (5) 

where do) is an element of the solid angle. 



Following Diermendjian [Ref. 12: p. 13], by representing the unpolarized incident 

radiation as the sum of two independent and linearly polarized components of equal flux, 

the scattering cross section can be expressed as 

o-sca(m,x) = jdo-(m,x,0) = -j(AlA* + A2A*)dco   , (6) 

where Q = ATT is the solid angle. 

The scattering efficiency factor Qsc(m,x) is obtained by normalizing crsca by the 

sphere's geometrical cross section m2 : 

QscM,x)=^^ = \±(2n + l)(\an\2+\bn\
2)   . 

m x  n=I 
(7) 

The total extinction cross section and efficiency factor, which includes the 

contribution due to absorption, can be similarly defined.   This leads to the following 

expression for extinction efficiency factor: 

Qe«=AiL(2n + l)M"n+K)      ■ (8) 
X    «=1 

As noted earlier for the case of a purely real index of refraction m, there will be no 

absorption, and thus the extinction efficiency factor Qext will be identically equal to the 

scattering efficiency factor Qsca ■ 

D.       THE MIE COEFFICIENTS 

The simplest and most elegant expressions for the Mie coefficients are as follows 

[Ref. 13: p. 195]: 

j„(kr) 
a"~hw„(kr)    ' (9a) 



=    krjn{kr)-njn(kr) 

"    krhn_x{kr)-nhm
n{kr)    ' l   J 

where j„(kr) is a spherical Bessel function of the first kind with order n, h{1)„(kr) is a Bessel 

function of the third kind, known as a Hankel function, and is defined as 

tiX)
n{kr) = jn{kr) + iyn(kr)    , (10) 

and yn(kr) is a spherical Bessel function of the second kind with order n. 

Another common form of the Mie coefficients is that adopted by van de Hülst 

[Ref. 14: p. 123]: 

An{Z)y,n{x)-m¥>n{x) (Ha) 

b   =
mAn(Z)Vn(x)-K(X) (Uh) 

"     mAn(zKn(x)-Cn(x)   ' l     ; 

where z = mx, while y/n and C,n are Ricatti-Bessel functions which are defined as 

follows: 

Vn(x) = xj„(x)  , (12a) 

Z„(x) = -xyn(x)  , (12b) 

£*(.*) = Vn(x) + izn(x)   . (12c) 

Here,y„ and^„ are spherical Bessel functions of the first and second kind, respectively. 

For computational purposes, it is best to express the Mie coefficients in a form 

conducive to separating their real and imaginary components. Through the use of 

recursion formulas and circular functions [Ref. 12: p. 16-19], the Mie coefficients may be 

written in the alternative form [Ref. 15: pp. 16-17]: 

10 



ö 
m       x)  

^>+%<*)-C,(*) [   m      x) 

(13a) 

\mAJI(z) + -{y/„(x)-y/„_l(x) 
bn=± *L  . (13b) 

|^„(z) + -|^(x)-C1(^) 

These forms of the Mie coefiBcients were programmed, using the C language, to determine 

the Mie coefficients and hence the extinction efficiency factor Qext. 

E.        CALCULATING Q^ USING ANSI C 

The author wishes to thank the writers of "Numerical Recipes in C" [Ref. 16] for 

enabling the circumvention of the reinvention of the wheel, in that their code for 

computing ordinary and spherical Bessel functions and their derivatives was utilized in this 

thesis research for computing the Mie coefficients and calculating the extinction efficiency 

factor. Of noteworthy interest is that said code cites Jerry Lentz of the Naval 

Postgraduate School as the author of an improved technique for calculating Bessel 

functions through the use of continued fractions. 

The code used for calculating the ordinary Bessel functions is incorporated into a 

structure which returns the values of the Bessel functions of the first and second kind, and 

their first derivatives. The spherical Bessel function code simply generates a normalization 

factor, makes a call to the function which calculates ordinary Bessel functions (of half-odd 

integer order), then in like fashion returns values of the spherical Bessel functions of the 

first and second kind, and their first derivatives. The code for calculating the ordinary 

11 



Bessel functions also makes calls to two additional functions, "beschb" and "chebev", also 

obtained from "Numerical Recipes in C" [Ref. 16]. The "beschb" function is used to 

evaluate the gamma functions present in the Bessel function formula, calling the "chebev" 

function in the process to perform Chebyshev expansion. 

Once the interfacing codes for calculating ordinary and spherical Bessel functions 

were brought together, a program was written to assemble the components of the Mie 

coefficients as expressed in Eqs. (13a) and (13b).   Again, the Mie coefficients are 

functions of the dimensionless size parameter x and the index of refraction m. 

Next, a loop was created that calculated the individual terms of the extinction 

efficiency factor (one of the Mie parameters), each term of which relied on a calculated 

value of the Mie coefficients. As is the case of all of the Mie parameters, the extinction 

efficiency factor is represented as an infinite sum. Thus, the loop for calculating the 

efficiency extinction factor was summed until the value converged to one part in 108. 

With each increment of the loop counter, the Bessel functions associated with the Mie 

coefficients were of subsequent higher order, i.e., for n=l, J„(x) would be a Bessel 

function of the first order; for n=2, Jn{x) would be a Bessel function of the second order, 

and so on. 

As a test for the accuracy of the code and the correctness of the programming, a 

routine was created that calculated the extinction efficiency factor for size parameter x 

varying from 0 to 9, using a step size of 0.01 and applying 6 different values for the 

refractive index. A plot showing all six curves was produced from the data obtained from 

this program and is shown in Fig. 2. This plot very closely resembles that which was 

12 



produced by Van de Hülst [Ref. 14: p. 151], with the exception that Van de Hulst's plot 

was intentionally smoother as a result of not showing fine detail. The C code used to 

produce data for Fig. 2 is included as Appendix G, with the output data being sent to a file 

called "Qout". The Matlab code used to produce Figure 2 is included as Appendix H. 

13 
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III. THE LEVIN METHOD 

A. SERIES ACCELERATION METHODS 

The main idea behind the Levin method, as in any series acceleration technique, is 

to transform a given slowly converging series into another series that converges faster. 

We note here the distinction between a sequence and a series. An infinite sequence (S„) is 

an unending progression of numbers S„ which may be real or complex. A sequence 

converges if a number, S, exists so that, corresponding to every positive number s, no 

matter how small, a number n0 can be found such that \Sn -S\<e for n>n0. In this case, 

the sequence (S„) is said to converge to the limit S as n tends to infinity. An infinite series, 

on the other hand, is the sum of an infinite sequence. Let ux,u2,...,un,... be an infinite 

sequence of numbers, real or complex. Let the sum w, + u2 H— un be denoted by S„, 

which is called the nth partial sum. Then, if the sequence of partial sums (S„) converges to 

a limit, S, the infinite series w, + u2 H—  is said to be convergent, or to converge to the 

sum S. The connection with the Levin method is to transform the sequence of partial 

sums into another sequence that converges faster, i.e., requires fewer terms to converge to 

the limit. 

Given a sequence of real or complex numbers (S„) which converges to S, this 

sequence can be transformed into another sequence (T„). A trivial example of such a 

sequence transformation is 

Tm=§B±§BiLi « = 0,1,.... (14) 

15 



To be useful, however, the following properties for the transformed sequence must hold 

[Ref. 11: p. 1]: 

1. (T„) must converge, 

2. (T„) must converge to the same limit as (S„), and 

3. (T„) must converge to 5 faster than (&,); that is, lim(r„ - S)/(Sn -S) = Q. 

If property 3 holds, the transformation T is said to accelerate the convergence of the 

sequence (S„), or that the sequence (T„) converges faster than (S„). An example of a 

sequence transformation meeting these three conditions is Aitken's A2 process [Ref. 11: 

pp. 1-7]: 

or, 

"     A%     "   {     A2SnJ 

W+2      \+l 

S„+1  , (15) 

Tn=      nn+2 s±L_ » = 0,1,...  . (16) 
Sn+2-2Sn+1+S„' 

where A is the difference operator defined by Avn = vn+1 - vn and At+,vn = A*vn+1 - A*vn. 

The A in the denominator of Eq. (15) accounts for the process's name. 

The Levin transformation, as with most other transformation algorithms, is a 

particular case of what is known as the E-transformation, which is the most general 

sequence transformation. Transformations belonging to the E-transformation class include 

[Ref. 11: p. 56]: Richardson polynomial extrapolation, Shanks' transformation, the Levin 

transformation, and many other historically known acceleration methods. We note that 

16 



series acceleration is an active field of research in numerical analysis, with the Levin 

method and E-transformation having been discovered only in the past 25 years. 

B. THE E-ALGORITHM 

Following Brezinski and Zaglia [Ref. 11: pp. 56-57], the E-transformation is based 

on the following relation: 

S„-S-algl(n) akgk(n) = 0  , (17) 

where S„ is an element of the sequence to be transformed, the a's are unknown scalars, the 

g/(«)'s are given auxiliary sequences (which may depend on terms of the sequence S„ 

itself), and where k is a fixed integer. Rewriting Eq. (17) in terms of S„, 

Sn = S + algl(n) + - + akgk(n)   . (18) 

The basic idea behind Eq. (18) is to attempt to fit the actual behavior of S„, as a function 

of«, so that it may be extrapolated smoothly to the (unknown) limit, S. This fitting is 

achieved through the particular choices of the functions g;(«)-  By incrementing n in Eq. 

(18) to n + k, one has k + 1 equations in k + 1 unknowns (the limit S and the scalars 

ax,--,ak). By solving these equations, we obtain a sequence of estimates for the limit, 

which we denote by El.n): 

E? = 

sn    ■ 

gl(«)  • 

Sn+k 

■   gi(n + k) 

8k(»)   • ■   £*(" + £) 
1 

gxin)    • 

1 

•   &(« + *) 

gk(")   ■ •   &(» + *) 

(19) 

17 



It is assumed that the determinant in the denominator of Eq. (19) is not equal to zero. 

Finally, note that Eq. (18) is the kernel of the transformation Eq. (19); that is, Eq. (18) is 

the set of sequences for which there exists the sequence S such that, for all n, E[n) = S. 

The E-algorithm is the recursive algorithm that allows one to compute the numbers 

E(
k
n) without actually computing the determinants in Eq. (19). Given the following rules, 

E<tt)=S„,       » = 0,1,... (20a) 

go? =&(")>        " = 0,1,... and i = l,2,... , (20b) 

then for k = 1, 2,... and » = 0,1,..., the main rule for the E-algorithm is 

E-(«+l) _ p(«) 
F(«) _ £(") _   ^*-l flfcL. „(«) (0]\ 
^k ^k-\ (n+\) In)        &k-\,k   » \Al) 

where the gk"\k 's are auxiliary sequences computed by the following auxiliary rule: 

(n+D _     (n) 
p.(»)_p.(»)     s*-u   &k-\,i    (») i-fr+i k+? crr\ 
Sk,i  - Sk-U („+i) _    („)       Sk-\,k    ■>        / - Ä +1, «+ Z,...    . \IL) 

Sk-l,k      Sk-\,k 

C. LEVIN'S TRANSFORMS 

Levin's method of generating non-linear transformations for increasing the rate of 

convergence of sequences [Ref. 17: pp. 371-388] was first introduced in 1973. For 

Levin's generalized transformation, the auxiliary sequences denoted by the g/(«)'s in the 

E-transformation given in Eq. (19) take on the particular form: 

&■(») = - -, (23) 
yn 

where x„ and y„ are themselves auxiliary sequences. 

18 



Levin's transforms are basically generalizations of Aitken's A2 process and of the 

E-transformation corresponding to the first column of the E-algorithm as shown in 

Eq. (21) [Ref. 11: p. 113], denoted as El. The kernel of Aitken's process is 

Sn-S = a.AS„ , 

while the kernel of the transformation E, is of the form 

(24) 

Sn~S = tn-g(n) (25) 

By definition in the Levin method, g(n) is taken to be an arbitrary polynomial of degree 

(k -1) of the quantity (n)' . Also, /„ denotes the nth element of the series (as for example 

Jh the n  term of the Mie series). Thus, the sequences of Eq. (25) can be expressed as 

S-S = t a1+a2(ny1 + - + ak(n) ■(*-i) (26) 

Following Brezinski and Zaglia, multiplying both sides of Eq. (26) by {nf l and 

rearranging terms yields 

(w)      -*7- = aM     +o2(n)    +- + ak (27) 

By applying the operator A* to both sides of Eq. (27), the right hand side becomes 

identically zero, since it is a polynomial of degree [k -1) in n. Therefore, for all n, 

in) 
(t-i)  Sn-S 

= 0 (28) 
'"    / 

Since A* is a linear operator, the above expression can be also be expressed as 

fn J 

/<^^(*-]) > 
= S-A* w 

v    n    J 
(29) 
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The numbers Ek, denoted now as the Levin estimate L$, are therefore given by 

L" = ^((-r A.) ' <30) 

Using the well-known formula [Ref. 11: p. 115] 

A\,=I(-l)*C>n+, , (31) 
k=0 

where Ck
N is the binomial coefficient defined by 

N N\ 
k\{N-k)\ ' 

(32) 

Eq. (30) then becomes 

ft(-l)
k{n + k)N~l^N\/k\{N-k)l 

|-(")__*zl  "+* I  CXVl 

£(-l)k(n + k)N-—Nl k\(N-k)\ 
k=\ K+k I 

Equation (33) defines the sequence of Levin estimates for the limit of the series. 

D. ENCODING THE LEVIN TRANSFORM 

In the instances where the Levin code (Appendices C and L) was utilized, TN was 

used to represent the partial sum Sn+k from Eq. (33) above. The sum TN is related to the 

sequence h by the following expression: 

^ = I>*. (34) 

In other words, tk represents the individual term for the loop which calculates the 

extinction efficiency factor Q^, and TN is the value for which Q^ converges to one part 
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in 108. Equation (33) was split into two individually calculated terms, P[N] and ß[N], 

representing the numerator and denominator, respectively. Consequently, the following 

equations result: 

PiN^iti-lfikf-^Nl/kliN-ky.  , and (35) 

^N] = ±{-l)k{k)N-X^N\lk\{N-k)\  . (36) 

Thus, Eq. (30) becomes 

L")=T[N]=m ■ (37) 

Equation (34) was encoded in order to calculate the Levin estimate of Q^, and the 

number of terms needed for the Levin transform to cause the infinite series representation 

of Q^ to converge was subsequently determined. This number was compared with that 

which was obtained by direct slimming of the individual terms of the infinite series 

representation of Q^ to convergence in order to determine if the Levin method 

accelerated the convergence. 
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Size parameter x 

Figure 2. Extinction Efficiency Factor vs. Size Parameter 
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IV. RESULTS 

After completing the Mie code and producing values for the extinction efficiency 

factor that agreed with the tabulated results of Van de Hülst, the result obtained from 

applying the Levin method of series acceleration to the infinite series representation of a 

Mie scattering parameter was somewhat anti-climactic, albeit not entirely unanticipated. 

Simply put, the Levin method did not accelerate the convergence of the extinction 

efficiency factor. In point of fact, the number of iterations required for the Levin method 

to converge to a given accuracy was approximately the same, less one or two terms, as the 

number of terms required by direct summation. Size parameters ranging from 0 to 100 

were used in making this determination. Since the Levin method requires calls to 

additional functions that calculate the log of a gamma function, the log of a factorial, and a 

binomial coefficient at each iteration of the summation loop - the codes for which were 

obtained from "Numerical Recipes in C" [Ref. 16] - this method is actually slower than 

direct summation. It should also be noted that, for size parameters x > 108, the Levin 

method fails entirely because the individual terms t„ become vanishingly small, producing 

undefined output. The code used to determine Q^ via summing the infinite series and the 

code utilizing the Levin estimate are included as Appendices I and J, respectively. 

The C code used to produce the data used for the plot shown in Figure 2 was 

slightly altered to determine the number of iterations required for the Mie series to 

converge as a function of size parameter. The result is shown in Figure 3. Since both 

methods of convergence required the same number of iterations, the code used for 
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summing the individual terms of the Mie series (Appendix G) was chosen to generate the 

data used for the plot shown in Figure 3. A linear relationship can easily be seen for all 

indices of refraction, with the number of terms in the series proportional to the size 

parameter. 

While a tremendous amount of effort was put forth to come to the conclusion that 

the Levin method is unsuccessful in accelerating the convergence of the Mie series, the 

work was not all for naught. An important question was answered, leading the way for 

further research in this area. 

3        4        5        6 
Size parameter x 

Figure 3. Rate Convergence vs. Size Parameter 
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V. CONCLUSION 

In this thesis research we assembled the code to calculate the Mie coefficients, 

integral components of all four of the Mie scattering parameters. Next, we calculated the 

Mie extinction efficiency factor by summing the terms of the infinite series representation 

to convergence. Several different indices of refraction were used, and a plot of the 

extinction efficiency factor versus size parameter was produced. These results were found 

to agree closely with that of Van de Hulst's authoritative work, thereby ensuring the 

accuracy of the code. Finally, an algorithm for the Levin method of series transformation 

was incorporated into the existing code. The rate of convergence was subsequently 

determined and compared with the rate of convergence achieved by summing the 

individual terms of the Mie series. Based on the results, we arrived at several important 

conclusions. 

First, the number of terms required to converge was found to be linearly related to 

the size parameter. This included size parameters both within and outside the Mie regime. 

The linear relationship continued until a limitation was reached, which leads us to our 

second conclusion. 

The magnitude of the size parameter was found to impose a limit on the extent to 

which the Levin method was able to cause the Me series to converge. While a size 

parameter of 108 is well beyond the Me scattering region and within the optical region, it 

still points to a computational limit of the Levin method. 
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Most importantly, we have concluded that the Levin method of series 

transformation did not accelerate the convergence of the Mie series. Several simulations 

were run using size parameters ranging from less than one up to one hundred, and indices 

of refraction ranging from one to two. All results showed a rate of convergence, insofar 

as the number of iterations required, equal to the rate obtained by summing the individual 

terms of the Mie series. This is an important result. There are other series transformation 

methods in existence that may accelerate the convergence of the Mie series, and these 

should be explored in their own right. 
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APPENDIX A: ALTERNATING HARMONIC SERIES CODE IN ANSI C 

/* Thesis Program to calculate number of terms for alternating harmonic series to reach progressive */ 
/* digits of accuracy */ 
/* LT Brian Johnson */ 
/* Compiler: Borland C++ Ver. 5.0 */ 
/* File Name: ln2.c */ 

# include <stdio.h> 
# include <math.h> 
# include <time.h> 

intn; 
int places = 1; 

double AltHarmSum = 0.0; 
double RoundedNew = 0.0; 
double RoundedOld = 0.0; 

float accuracy = 10.0; 

main() 
{ 
n = 0; 

do{ 
n+=l; 
AltHarmSum+=(double)( pow(-1 ,n+1 )/n); 
RoundedNew = floor(AltHarmSum*accuracy+.5)/accuracy; 

if (RoundedNew = RoundedOld) 
{ 
printf("\nlt took %d terms to reach %d digits of accuracy:", n, places); 
printf("\n Sum = %f", AltHarmSum); 
printfC*\n Time elapsed: %3.2f sec.\n", clock()/le6 ); 
places+=l; 
accuracy*=10.0; 

} 
RoundedOld = RoundedNew; 

} while (places <= 15); 
} 

27 



28 



APPENDIX B. OUTPUT OF ALTERNATING HARMONIC SERIES CODE 

It took 12 terms to reach 1 digits of accuracy: 
Sum = 0.653211 
Time elapsed: 0.00 sec. 

It took 271 terms to reach 2 digits of accuracy: 
Sum = 0.694989 
Time elapsed: 0.00 sec. 

It took 1417 terms to reach 3 digits of accuracy: 
Sum = 0.693500 
Time elapsed: 0.01 sec. 

It took 177341 terms to reach 4 digits of accuracy: 
Sum = 0.693150 
Time elapsed: 1.33 sec. 

It took 229300 terms to reach 5 digits of accuracy: 
Sum = 0.693145 
Time elapsed: 1.71 sec. 

It took 1565239 terms to reach 6 digits of accuracy: 
Sum = 0.693147 
Time elapsed: 11.70 sec. 
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APPENDIX C: LEVIN ALGORITHM ON ALTERNATING HARMONIC SERIES 

/* Thesis Program to apply Levin method to alternating harmonic series and compute number of terms */ 
/* for series to converge */ 
/* LT Brian Johnson */ 
/* Compiler: Borland C++ Ver. 5.0 */ 
/* File Name: ln21ev.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <stddef.h> 
#include <math.h> 

#defme MAX 15 

int k; 

double T[MAX+1], t[MAX+l]; 

double a; 

main() 

{ 
T[0] = t[0] = 0.0; 
k=l; 

printf("\n\ni T[i] t[i] P[i]/Q[i]\n"); 

while(k<=MAX) 
{ 
t[k] = (doubleX pow(-l,k+l)/k); 
T[k] = T[k-l] + t[k]; 
k = k+l; 

} 
a = levin(); 

} 

double levin() 

{ 
double P[MAX+1],Q[MAX+1]; 
intl; 
1=1; 
P[0] = Q[0] = 0.0; 
while(K=MAX) 

{ 
P[l]=P[l-l]+pow(-l,l)*pow(l,MAX-l)*T[l]/t[l]*bico(MAX,l); 
Q[l]=Q[l-l]+pow(-l,l)*pow(l,MAX-l)/t[l]*bico(MAX,l); 
1=1+1; 
printf("\n%d %f        %f       %f", i,T[i], t[i], P[i]/Q[i]); 

} 
return (P[MAX]/Q[MAX]); 

} 
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double bico(int n, int k) 
{ double factln(int n); 

return floor(0.5+exp(factln(n)-factln(k)-factln(n-k))); 
} 

double factln(int n) 
{ double gammln(float xx); 

static float a[101]; 
if(n<= 1) return 0.0; 
if (n <= 100) return a[n] ? a[n]: (a[n]=gammln(n+1.0)); 
eise return gammln(n+1.0); 

double gammln(float xx) 
{ double x,y,tmp,ser; 

static double cofl6]={76.18009172947146,-86.50532032941677, 
24.01409824083091,-1.231739572450155, 
0.1208650973866179e-2,-0.5395239384953e-5}; 

intj; 
y=x=xx; 
tmp=x+5.5; 
tmp — (x+0.5)*log(tmp); 
ser=1.000000000190015; 
for (j=0;j<=5 J++) ser += coflj]/++y; 
return -tmp+log(2.5066282746310005*ser/x); 

} 
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APPENDIX D: ANSI C CODE TO PRODUCE DATA FOR ALTERNATING 
HARMONIC SERIES PLOT 

/* Thesis Program to produce data for plot of convergence of alternating harmonic series to ln(2) */ 
/* LT Brian Johnson */ 
/* Compiler: Borland C++ Ver. 5.0 */ 
/* File Name: ln2plot.c */ 

# include <stdio.h> 
# include <math.h> 
# include <time.h> 

intn; 
int places = 1; 

double AltHarmSum = 0.0; 
double RoundedNew f 0.0; 
double RoundedOld = 0.0; 

float accuracy = 10.0; 

main() 

{ 
for(n= l;n<=51;n++) { 

AltHarmSum+=(double)( pow(-1 ,n+1 )/n); 
RoundedNew = floor(AltHarmSum*accuracy+.5)/accuracy; 

printf("\n%d %1.3f, n, log(2) - fabs(log(2) - AltHarmSum)); 
} 

} 
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APPENDIX E. ANSI C CODE TO PRODUCE DATA FOR PLOT OF LEVIN 
METHOD ON ALTERNATING HARMONIC SERIES 

/* Thesis Program to produce data for plot of Levin method on the convergence of alternating */ 
/* harmonic series to ln(2) */ 
/* LT Brian Johnson */ 
/* Compiler: Borland C++ Ver. 5.0 */ 
/* File Name: ln21evplot.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <stddef.h> 
#include <math.h> 
#include "nrutil.h" 
#include "nrutil.c" 
#include <time.h> 

#defmeMAX16 

double levin(); 
double bico(int, int); 
double factln(int); 
double gammln(float); 
double T[MAX+1], t[MAX+l]; 
double a; 

int k, i; 

mainO 
{ 
T[0] = t[0] = 0.0; 
k=l; 

while(k<=MAX) 
{ 
t[k] = (double)( pow(-l,k+l)/k); 
T[k] = T[k-l] + t[k]; 
k = k+l; 

} /* end while */ 

a = levin(); 

} /* end main */ 

double levin() 
{ 
double P[MAX+1], Q[MAX+1]; 
double commonTerm; 
intN; 
P[0] = Q[0] = 0.0; 

for (N = 1; N <= MAX; N++) 
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{ 
for(k=l;k<=N;k++) 
{ 
commonTerm = pow(-l,k)*pow(k,N-l)/t[k]*bico(N,k); 
P[k] = P[k-1] + commonTerm*T[k]; 
Q[k] = Q[k-1] + commonTerm; 

} 

printf("\n%d     %32.3 llf", k-1, log(2) - fabs(log(2) - P[N]/Q[N])); 
} /* end for N loop */ 

prmtf("\n\n"); 
return (P[MAX]/Q[MAX]); 

} 

double bico(int n, int k) 
{ double factln(int n); 

return floor(0.5+exp(factln(n)-factln(k)-factln(n-k))); 
} 

double factln(int n) 
{ double gammln(float xx); 

static float a[101]; 
if(n<= 1) return 0.0; 
if (n <= 100) return a[n] ? a[n]: (a[n]=gammln(n+1.0)); 
else return gammln(n+1.0); 

} 

double gammln(float xx) 
{ double x,y,tmp,ser; 

static double cof[6]={76.18009172947146,-86.50532032941677, 
24.01409824083091,-1.231739572450155, 
0.1208650973866179e-2,-0.5395239384953e-5}; 

intj; 
y=x=xx; 
tmp=x+5.5; 
tmp -= (x+0.5)*log(tmp); 
ser=1.000000000190015; 
for ö=0y<=5y++) ser += cof[j]/++y; 
return -tmp+log(2.5066282746310005*ser/x); 

} 
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APPENDIX F. MATLAB CODE TO PRODUCE PLOT OF CONVERGENCE OF 
ALTERNATING HARMONIC SERIES 

/* Thesis Program to produce data for plot of Levin method on the convergence of alternating */ 
/* harmonic series to ln(2) */ 
/* LT Brian Johnson */ 
/* Software: Matlab Ver. 4.2C */ 
/* File Name: ln2comp.m */ 

load ln2graf-ascii 
load ln21evgr -ascii 
x = ln2graf(:,l); 
y = ln2graf(:,2); 

x2 = ln21evgr(:,l); 
y2 = ln21evgr(:,2); 

B = ones(l,71); 
figure(l) 
C = 0.99*B; 
plot(x-l,y/log(2),x-l,C,':',x2-l,y2/log(2)) 
xlabel('Number of iterations') 
ylabel('Partial Sum / ln2') 
title ('Levin Method vs Infinite Sum for ln(2)') 
axis([0 70 0 1]) 
gtext('0.99 -->') 
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APPENDIX G. ANSI C CODE TO PRODUCE DATA FOR EXTINCTION 
EFFICIENCY FACTOR AND CONVERGENCE RATE VS SIZE PARAMETER 

/* Thesis Program to produce data for plotting Q^ vs size parameter */ 

/* LT Brian Johnson */ 
/* Compiler: Borland C++ Ver. 5.0 */ 
/* File Name: Miegraph.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <stddef.h> 
/* #include <iostream.h> */ 
#include <math.h> 
#include "nrutil.h" 
#include "nrutil.c" 
#defineNRANSI 
#defineEPS1.0e-10 
#defineFPMIN1.0e-30 
#defmeMAXIT 10000 
#define XMIN 2.0 
#defme PI 3.141592653589793 
#defme RTPI02 1.2533141 
#defmeNUSE15 
#defineNUSE2 5 

struct bessVec { 
double rj, ry, rjp, ryp; 

}; 

struct complex { 
double real, imag; 

}; 

void assignBessels(struct bessVec* besselsPtr, double rjdummy, double rydummy, double rjpdummy, 
double rypdummy) 
{ 

besselsPtr -> rj = rjdummy; 
besselsPtr -> ry = rydummy; 
besselsPtr -> rjp = rjpdummy; 
besselsPtr -> ryp = rypdummy; 

} 

struct bessVec sphbes(double, int); /* Function Prototype */ 
struct bessVec bessjy(double, double); /* Function Prototype */ 

struct bessVec sphBesselsn; /* j's, y's & deriv's for Ricatti-Bes */ 
struct bessVec besselsnPlusHalf; /* for calculating J_n +/- half */ 
struct bessVec besselsnMinusHalf; 
struct complex an, b_n; /* Mie coefficients */ 
struct complex zetan; /* Ricatti-Bessel m */ 
struct complex zetanMinusl; 
struct complex denom; /* denominator in Mie coefficients */ 
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double x; /* size parameter */ 
double m; /* refractive index (non-absorbing spheres) */ 
double JnMinusHalf, JnPlusHalf; /* for calculating Afactor */ 
double Afactor; /* psi-prime divided by psi */ 
double psi_nMinus 1; /* Ricatti-Bessel fh 1 st kind, initialized */ 
double psin; 
double chi_n; /* Ricatti-Bessel fh 2nd kind */ 
double nOverx; 
double aBraces, bBraces; 
double numer; /* numerator in Mie coefficients */ 
double realDenom; /* rationalized denominator */ 
double sumQextOld, sumQext;    /* Extinction efficiency factor */ 
double Q_ext[900][6]; /* array of Q_ext's, fh's of m and x */ 
int num[900][6]; /* number of iterations to converge, f(x,m) */ 
double conv= 1.0e-8; 

int i; /* counter for x loop */ 
int j; /* counter for mArray loop */ 
int n; /* # iterations to converge, also order of bessel function */ 

main() 
{ 
double mArray[6] = {1.25, 1.33, 1.44, 1.50, 1.55, 2.0}; 

for(j = 0;j<=5;j++){ 

m = mArray |j]; 

for(x = 0.01; x <=9.0; x+= 0.01) { 

n = 0; /* initialize n for each x */ 
besselsnPlusHalf= bessjy(m*x, 0.5); /* initialize for Afactor */ 
JnPlusHalf = besselsnPlusHalf.rj; 

psin = sin(x); 
zeta_n.real = psin; /* initializing zeta */ 
zeta_n.imag = cos(x); 

sum_Qext= 0.0; 

do{ 
n = n + 1; 
J_nMinusHalf = J_nPlusHalf; 
psinMinusl = psin; 
zetanMinusl = zetan; 
sumQextOld = sumQext; 

besselsnPlusHalf = bessjy(m*x, n + 0.5);        /* calculating A factor */ 
JnPlusHalf = besselsnPlusHalf.rj; 
AJactor = (J_nMinusHalf7J_nPlusHalf) - (n/(m*x)); 
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sphBesselsn = sphbes(x, n); /* j's and y's for Ricatti Bess fin's */ 
psin = x * sphBessels_n.rj; 
chin = -x * sphBessels_n.ry; 
zeta_n.real = psin; 
zetanimag = chin; 

nOverx = n/x; 
aBraces = (Ajfactor / m + nOverx); 
bBraces = (A factor * m + nOverx); 

numer = aBraces*psi_n - psi_nMinusl; 

denom.real = (aBraces * zeta_n.real) - zetanMinusl.real; 
denom.imag = (aBraces * zeta_n.imag) - zetanMinusl.imag; 
realDenom = (denom.real*denom.real + denom.imag*denom.imag); 

a_n.real = (numer * denom.real)/realDenom; 
animag = (numer * denom.imag)/realDenom; 

numer = bBraces*psi_n - psinMinusl; 

denom.real = (bBraces * zeta_n.real) - zeta_nMinusl.real; 
denom.imag = (bBraces * zeta_n.imag) - zetanMinusl.imag; 
realDenom = (denom.real*denom.real + denom.imag*denom.imag); 

b_n.real = (numer * denom.real)/realDenom; 
b_n.imag = (numer * denom.imag)/realDenom; 

sumQext += (2*n + l)*(a_n.real + b_n.real); 

} while (fabs(sum Qext - sum QextOld) > conv);    /* end do-while loop */ 

Q_ext[(int)(x* 100-l)]ö] = 2.0/(x*x)*sum_Qext; 
num[(int)(x*100-l)][j] = n; 

} /* end inner x-loop */ 
} /* end outer j-loop (for various m values) */ 

for (i = 0; i < 899; i++) { 
printf("\n%f ", (i+1.0)/100.0); 

for(j = 0;j<=5;j++) 
printfC-yof ", Q_ext[i]D]); 

/*       printf("%d ", num[i][j]); */ 

} /* end i-j loop */ 

return 0; 
} 

struct bessVec sphbes(double x, int n) 
«. 
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struct bessVec tempsphbessels; 
struct bessVec bessels; 

double sj, sy, sjp, syp; 
void nrerror(char errortextfl); 
double factor, order; 

if (n < 0 || x <= 0.0) nrerror("bad arguments in sphbes"); 
order=n+0.5; 

bessels = bessjy(x,order); 
factor=RTPI02/sqrt(x); 
sj=factor*bessels.rj; 
sy=factor*bessels.ry; 
sjp=factor*bessels.rjp-(sj)/(2.0*x); 
syp=factor*bessels.ryp-(sy)/(2.0*x); 

assignBessels(&tempsphbessels, sj, sy, sjp, syp); 

return tempsphbessels; 

} 

struct bessVec bessjy(double x, double xnu) 
{ 

void merror(cliar error_text[]); 

struct bessVec tempBessels; 

double rj, ry, rjp, ryp; 

voidbeschb(double x, double *gaml, double *gam2, double *gampl, 
double *gammi); 

int i,isign,l,nl; 
double a,b,br,bi,c,cr,ci,d,del,dell,den,di,dlr,dli,dr,e,f^act,fact2, 

fac^,ff,gam,gaml,gam2,gammi,gampl,h,p,pimu,pimu2,q,r,rjl, 
rjll,rjmu,rjpl,rjpl,rjtemp,ryl,rymu,rymup,rytemp,sum,suml, 
temp,w,x2,xi,xi2,xmu,xmu2; 

if (x <= 0.0 || xnu < 0.0) nrerror("bad arguments in bessjy"); 
nl=(x < XMIN ? (int)(xnu+0.5) : IMAX(0,(int)(xnu-x+1.5))); 
xmu=xnu-nl; 
xmu2=xmu*xmu; 
xi=1.0/x; 
xi2=2.0*xi; 
w=xi2/PI; 
isign=l; 
h=xnu*xi; 
if (h < FPMIN) h=FPMIN; 
b=xi2*xnu; 
d=0.0; 
c=h; 
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for(i=l;i<=MAXIT;i++) { 
b += xi2; 
d=b-d; 
if (fabs(d) < FPMIN) d=FPMIN; 
c=b-1.0/c; 
if (fabs(c) < FPMIN) c=FPMIN; 
d=1.0/d; 
del=c*d; 
h=del*h; 
if (d < 0.0) isign = -isign; 
if (fabs(del-1.0) < EPS) break; 

} 
if (i > MAXIT) nrerror("x too large in bessjy; try asymptotic expansion"); 
rjl=isign*FPMTN; 
rjpl=h*rjl; 
rjll=rjl; 
rjpl=rjpl; 
fact=xnu*xi; 
for (l=nl;l>=l;l~) { 

rjtemp=fact*rjl+rjpl; 
fact -= xi; 
rjpl=fact*rjtemp-rjl; 
rjl=rjtemp; 

} 
if(rjl==0.0)rjl=EPS; 
f=rjpl/rjl; 
if(x<XMTN){ 

x2=0.5*x; 
pimu=PI*xmu; 
fact = (fabs(pimu) < EPS ? 1.0 : pimu/sin(pimu)); 
d=-log(x2); 
e=xmu*d; 
fact2 = (fabs(e) < EPS ? 1.0 : sinh(e)/e); 
beschb(xmu,&gaml,&gam2,&gampl,&gammi); 
ff=2.0/PI*fact*(gaml*cosh(e)+gam2*fact2*d); 
e=exp(e); 
p=e/(gampl*PI); 
q=1.0/(e*PI*gammi); 
pimu2=0.5*pimu; 
fact3 = (fabs(pimu2) < EPS ? 1.0 : sin(pimu2)/pimu2); 
r=PI*pimu2*fact3 *fact3; 
o=1.0; 
d = -x2*x2; 
sum=ff+r*q; 
suml=p; 
for (i=l;i<=MAXTT;i++) { 

ff=(i*ff+p+q)/(i*i-xmu2); 
c *= (d/i); 
p /= (i-xmu); 
q /= (i+xmu); 
del=c*(ff+r*q); 
sum += del; 
dell=c*p-i*del; 
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} else { 

suml +=dell; 
if (fabs(del) < (1.0+fabs(sum))*EPS) break; 

} 
if (i > MAXTT) nrerror("bessy series failed to converge"); 
rymu = -sum; 
ryl = -suml*xi2; 
rymup=xmu*xi*rymu-ry 1; 
rjmu=w/(rvmup-f*rvmu); 

a=0.25-xmu2; 
p = -0.5*xi; 
q=1.0; 
br=2.0*x; 
bi=2.0; 
fact=a*xi/(p*p+q*q); 
cr=br+q*fact; 
ci=bi+p*fact; 
den=br*br+bi*bi; 
dr=br/den; 
di = -bi/den; 
dlr=cr*dr-ci*di; 
dli=cr*di+ci*dr; 
temp=p*dlr-q*dli; 
q=p*dli+q*dlr; 
p=temp; 
for (i=2;i<=MAXTT;i++) { 

a += 2*(i-l); 
bi += 2.0; 
dr=a*dr+br; 
di=a*di+bi; 
if (fabs(dr)+fabs(di) < FPMIN) dr=FPMTN; 
fact=a/(cr*cr+ci*ci); 
cr=br+cr*fact; 
ci=bi-ci*fact; 
if (fabs(cr)+fabs(ci) < FPMIN) cr=FPMIN; 
den=dr*dr+di*di; 
dr/=den; 
di /= -den; 
dlr=cr*dr-ci*di; 
dli=cr*di+ci*dr; 
temp=p*dlr-q*dli; 
q=p*dli+q*dlr; 
p=temp; 
if (fabs(dlr-1.0)+fabs(dli) < EPS) break; 

} 
if (i > MAXTT) nrerror("cf2 failed in bessjy"); 
gam=(p-f)/q; 
rjmu=sqrt(w/((p-f)*gam+q)); 
rjmu=SIGN(rjmu,rjl); 
rymu=rjmu*gam; 
rymup=rymu*(p+q/gam); 
ryl=xmu*xi*rymu-rymup; 

44 



} 

fact=rjmu/rjl; 
rj=rjll*fact; 
rjp=rjpl*fact; 
for(i=l;i<=nl;i-H-){ 

iytemp=(xmu+i)*xi2*ryl-rymu; 
rymu=ryl; 
ryl=rytemp; 

} 
ry=rymu; 
ryp=xnu*xi*rymu-ry 1; 

assignBessels(&tempBessels, rj, ry, rjp, ryp); 

return tempBessels; 

voidbeschb(double x, doable *gaml, double *gam2, double *gampl, double *gammi) 
{ 

double chebev(double a, double b, double cQ, int m, double x); 
double xx; 
static double clQ = { 

-1.142022680371172e0,6.516511267076e-3, 
3.08709017308e-4,-3.470626964e-6,6.943764e-9, 
3.6780e-ll,-1.36e-13}; 

static double c2[] = { 
1.843740587300906e0,-0.076852840844786e0, 
1.271927136655e-3,-4.971736704e-6,-3.3126120e-8, 
2.42310e-10,-1.70e-13,-1.0e-15}; 

xx=8.0*x*x-1.0; 
*gaml=chebev(-1.0,1.05cl,NUSEl,xx); 
*gam2=chebev(-1.0,L0,c2,NUSE2,xx); 
*gampl= *gam2-x*(*gaml); 
*gammi= *gam2+x*(*gaml); 

} 

double chebev(double a, double b, double cQ, int m, double x) 
{ 

void nrerror(char errortextQ); 
double d = 0.0, dd = 0.0, sv, y, y2; 
intj; 

if ((x-a)*(x-b) > 0.0) nrerror("x not in range in routine chebev"); 
y2 = 2.0*(y=(2.0*x-a-b)/(b-a)); 
forö = m-l;j>=l;j-){ 

sv = d; 
d = y2*d-dd + c[j]; 
dd = sv; 

} 
return y*d - dd + 0.5*c[0]; 

} 

#undefEPS 
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#undefFPMIN 
#undefMAXrr 
#undefXMIN 
#undefPI 
#undefNRANSI 
#undefNUSEl 
#undefNUSE2 
#undefRTPI02 
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APPENDIX H. MATLAB CODE TO PLOT OUTPUT OF CODE LISTED 
IN APPENDIX G. 

load Qout -ascii 
x = Qout(:,l); 
yl = Qout(:,2); 
y2 = Qout(:,3); 
y3 = Qout(:,4); 
y4 = Qout(:,5); 
y5 = Qout(:,6); 
y6 = Qout(:,7); 

step = 0.25; 
xinc = step:step:8.75; 
for i = l:(length(xinc)-l) 
ylinc(i) = yl(100*xinc(i)+l); 
y2inc(i) = y2(100*xinc(i)+l); 
y3inc(i) = y3(100*xinc(i)+l); 
y4inc(i) = y4(100*xinc(i)+l); 
y5inc(i) = y5(100*xinc(i)+l); 
y6inc(i) = y6(100*xinc(i)+l); 

end 

plot(x,yl,x,y2,x,y3,x,y4,x,y5,x,y6, xinc,ylinc,'.', xinc,y2inc,'x', xinc, y3inc,'*', xinc,y4inc,'+', 
xinc,y5inc,'o', xinc, yöinc,'.') 
axis([0,9,0,6]) 
xlabel('Size parameter x'), ylabel('Qext') 
gtext('m = 2') 
gtext('m = 1.55') 
gtext(*m=1.50') 
gtext('m= 1.44') 
gtext('m=1.33') 
gtext('m= 1.25') 

load Qoutn -ascii 
x = Qoutn(:,l); 
yl = Qoutn(:,2); 
y2 = Qoutn(:,3); 
y3 = Qoutn(:,4); 
y4 = Qoutn(:,5); 
y5 = Qoutn(:,6); 
y6 = Qoutn(:,7); 

step = 0.25; 
xinc = step:step:8.75; 

for i = l:(length(xinc)-l) 
ylinc(i) = yl(100*xinc(i)+l); 
y2inc(i) = y2(100*xinc(i)+l); 
y3inc(i) = y3(100*xinc(i)+l); 
y4inc(i) = y4(100*xinc(i)+l); 
y5inc(i) = y5(100*xinc(i)+l); 
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y6inc(i) = y6(100*xinc(i)+l); 
end 

plot(x,yl,,k',x,y2,'m',x,y3,,c',x,y4,,r',x,y5,'g',x,y6,'b', xinc,ylinc,'.k', xinc,y2inc,'xm', xinc, y3inc,'*c', 
xinc,y4inc,'+r', xinc,y5inc,'og', xinc, y6inc,'.b') 

xIabel('Size parameter x'), ylabel('# iterations to converge') 

48 



APPENDIX I.   ANSI C CODE FOR CALCULATING EXTINCTION 
EFFICIENCY FACTOR 

/* Thesis Program for calculating Q^ as a function of user-defined size parameter */ 

/* LT Brian Johnson */ 
/* Compiler: Borland C++ Ver. 5.0 */ 
/* File Name: mie.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <stddef.h> 
#include <math.h> 
#include "nrutil.h" 
#include "nrutilx" 
#defineNRANSI 
#defineEPS1.0e-10 
#defineFPMIN1.0e-30 
#define MAXIT 10000 
#defineXMIN2.0 
#define PI 3.141592653589793 
#define RTPI02 1.2533141 
#defineNUSE15 
#defineNUSE2 5 

struct bessVec { 
double rj, ry, rjp, ryp; 

}; 

struct complex { 
double real, imag; 

}; 

void assignBessels(struct bessVec* besselsPtr, double rjdummy, double rydummy, double rjpdummy, 
double rypdummy) 
{ 

besselsPtr -> rj = rjdummy; 
besselsPtr -> ry = rydummy; 
besselsPtr -> rjp = rjpdummy; 
besselsPtr -> ryp = rypdummy; 

} 

struct bessVec sphbes(double, int); /* Function Prototype */ 
struct bessVec bessjy(double, double); /* Function Prototype */ 

struct bessVec sphBesselsn; 
struct bessVec besselsnPlusHalf; 
struct bessVec besselsnMinusHalf; 
struct complex an, b_n; /* Mie coefficients */ 
struct complex zetan; 
struct complex zetanMinusl; 
struct complex denom; /* denominator in Mie coefficients */ 
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double x = 109.0; /* size parameter */ 
double m = 2.0; /* refractive index (non-absorbing spheres) */ 
double JnMinusHalf, JnPlusHalf; 
double Afactor; 
double psi_nMinusl; /* Ricatti-Bessel fh 1st kind, initialized */ 
double psin; 
double chin; 
double nOverx; 
double aBraces, bBraces; 
double numer; 
double realDenom; 

/* Ricatti-Bessel fh 2nd kind */ 

/* numerator in Mie coefficients */ 
/* rationalized denominator */ 

double sumQextOld, sumQext, Q_ext;    /* Extinction efficiency factor */ 
double conv = 1.0e-8; 

int n = 0; /* loop counter, also order of bessel function */ 

main() 
{ 
bessels^nPlusHalf= bessjy(m*x, 0.5); 
JnPlusHalf = besselsnPlusHalf.rj; 

/* initialize for A factor */ 

psin = sin(x); 
zeta_n.real = psi_n; 
zeta_n.imag = cos(x); 

/* initializing zeta */ 

sum_Qext = 0.0; 

do{ 
n = n+l; 
J_nMinusHalf = J_nPlusHalf; 
psinMinusl = psin; 
zetanMinusl = zetan; 
sumQextOld = sumQext; 

besselsnPlusHalf = bessjy(m*x, n + 0.5); 
JnPlusHalf = bessels_nPlusHalf.rj; 
A_factor = (J_nMinusHalf/J_nPlusHalf) - (n/(m*x)); 

/* calculating A factor */ 

sphBesselsn = sphbes(x, n); 
psi_n = x * sphBessels_n.rj; 
chin = -x * sphBessels_n.ry; 
zeta_n.real = psin; 
zeta_n.imag = chin; 

/* j's and y's for Ricatti Bess fn's */ 

nOverx = n/x; 
aBraces = (Afactor / m + nOverx); 
bBraces = (Afactor * m + nOverx); 

numer = aBraces*psi_n - psinMinusl; 

denom.real = (aBraces * zetan.real) - zeta_nMinusl.real; 
50 



denom.imag = (aBraces * zetaaimag) - zetanMinusl.imag; 
realDenom = (denom.real*denom.real + denom.imag*denom.imag); 

an.real = (numer * denom.real)/realDenom; 
a_n.imag = (numer * denom.imag)/realDenom; 

numer = bBraces*psi_n - psi_nMinus 1; 

denom.real = (bBraces * zeta_n.real) - zetanMinusl.real; 
denom.imag = (bBraces * zeta_n.imag) - zeta_nMinusl.imag; 
realDenom = (denom.real*denom.real + denom.imag*denom.imag); 

b_n.real = (numer * denom.real)/realDenom; 
b_n.imag = (numer * denom.imag)/realDenom; 

sumQext += (2*n + l)*(a_n.real + b_n.real); 

} while (fabs(sum_Qext - sum_Qext01d) > conv); 

Qjjxt = 2.0/(x*x)*sum_Qext; 

printf("\n\nThe Extinction Efficiency Factor is: Qext = %f", Q_ext, "\n\n"); 
printf("\nNumber of iterations: %d\n", n); 
printf("\nx = %3.2f m = %1.2f \n\n", x, m); 
return 0; 
} 

struct bessVec sphbes(double x, int n) 
{ 

struct bessVec tempsphbessels; 
struct bessVec bessels; 

double sj, sy, sjp, syp; 
void nrerror(cbar error_text[]); 
double factor, order; 

if (n < 0 || x <= 0.0) nrerror("bad arguments in sphbes"); 
order=n+0.5; 

bessels = bessjy(x,order); 
factor=RTPI02/sqrt(x); 
sj=factor*bessels.rj; 
sy=factor*bessels.ry; 
sjp=factor*bessels.rjp-(sj)/(2.0*x); 
syp=factor*bessels.ryp-(sy)/(2.0*x); 

assignBessels(&tempsphbessels, sj, sy, sjp, syp); 

return tempsphbessels; 
} 

struct bessVec bessjy(double x, double xnu) 
{ 
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void nrerror(char error_text[]); 

struct bessVec tempBessels; 

double rj, ry, rjp, ryp; 

void beschb(double x, double *gaml, double *gam2, double *gampl, 
double *gammi); 

int i,isign,l,nl; 
double a,b,br,bi,c,cr,ci,d,del,dell,den,di,dlr,dli,dr,e,f,fact,fact2, 

fact3,flf,gam,gaml,gam2,gammi,gampl,h,p,pimu,pimu2,q,r,rjl, 
ijll,gmu,ijpl,ijpl,ijtemp,iyl,rymu,rymup,rytemp,sum,suml, 
temp,w,x2,xi,xi2,xmu,xmu2; 

if (x <= 0.0 || xnu < 0.0) nrerror("bad arguments in bessjy"); 
nl=(x < XMTN ? (int)(xnu+0.5): IMAX(0,(int)(xnu-x+1.5))); 
xmu=xnu-nl; 
xmu2=xmu*xmu; 
xi=1.0/x; 
xi2=2.0*xi; 
w=xi2/PI; 
isign=l; 
h=xnu*xi; 
if (h < FPMTN) h=FPMTN; 
b=xi2*xnu; 
d=0.0; 
c=h; 
for (i=l;i<=MAXTT;i-H-) { 

b += xi2; 
d=b-d; 
if (fabs(d) < FPMTN) d=FPMTN; 
c=b-1.0/c; 
if (fabs(c) < FPMTN) c=FPMTN; 
d=1.0/d; 
del=c*d; 
h=del*h; 
if (d < 0.0) isign = -isign; 
if (fabs(del-1.0) < EPS) break; 

} 
if (i > MAXTT) nrerror(nx too large in bessjy; try asymptotic expansion"); 
rjl=isign*FPMrN; 
rjpl=h*rjl; 
rjll=rjl; 
rjpl=rjpl; 
fact=xnu*xi; 
for(l=nl;l>=l;l-){ 

rjtemp=fact*rjH-rjpl; 
fact -= xi; 
rjpl=fact*rjtemp-rjl; 
rjl=rjtemp; 

} 
if(rjl==0.0)rjl=EPS; 
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f=rjpl/rjl; 
if(x<XMIN){ 

x2=0.5*x; 
pimu=PI*xmu; 
fact = (fabs(pimu) < EPS ? 1.0 : pimu/sin(pimu»; 
d=-log(x2); 
e=xmu*d; 
fact2 = (fabs(e) < EPS ? 1.0 : sinh(e)/e); 
beschb(xmu,&gaml,&gam2,&gampl,&gammi); 
ff=2.0/PI*fact*(gaml*cosh(e)+gam2*fact2*d); 
e=exp(e); 
p=e/(gampl*PI); 
q=1.0/(e*PI*gammi); 
pimu2=0.5*pimu; 
fact3 = (fabs(pimu2) < EPS ? 1.0 : sin(pimu2)/pimu2); 
r=PI*pimu2*fact3*foct3; 
c=1.0; 
d=-x2*x2; 
sum=ff+r*q; 
suml=p; 
for (i=l;i<=MAXIT;i++) { 

ff=(i*ff+p+q)/(i*i-xmu2); 
c *= (d/i); 
p /= (i-xmu); 
q/=(i+xmu); 
del=c*(ff+r*q); 
sum += del; 
dell=c*p-i*del; 
suml+=dell; 
if (fabs(del) < (1.0+fabs(sum))*EPS) break; 

} 
if (i > MAXTT) nrerror("bessy series failed to converge"); 
rymu = -sum; 
ryl = -suml*xi2; 
rymup=xmu*xi*rymu-ryl; 
rjmu=w/(rymup-f*rymu); 

} else{ 
a=0.25-xmu2; 
p = -0.5*xi; 
q=10; 
br=2.0*x; 
bi=2.0; 
fact=a*xi/(p*p+q*q); 
cr=br+q*fact; 
ci=bi+p*fact; 
den=br*br+bi*bi; 
dr=br/den; 
di = -bi/den; 
dlr=cr*dr-ci*di; 
dli=cr*di+ci*dr; 
temp=p*dlr-q*dli; 
q=p*dli+q*dlr; 
p=temp; 
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for (i=2;i<=MAXrT;i++) { 
a+=2*(i-l); 
bi += 2.0; 
dr=a*dr+br; 
di=a*di+bi; 
if (fabs(dr)+fabs(di) < FPMTN) dr=FPMIN; 
fact=a/(cr*cr+ci*ci); 
cr=br+cr*fact; 
ci=bi-ci*fact; 
if (fabs(cr)+fabs(ci) < FPMTN) cr=FPMIN; 
den=dr*dr+di*di; 
dr /= den; 
di /= -den; 
dlr=cr*dr-ci*di; 
dli=cr*di+ci*dr; 
temp=p*dlr-q*dli; 
q=p*dli+q*dlr; 
p=temp; 
if (fabs(dlr-1.0)+fabs(dli) < EPS) break; 

} 
if (i > MAXTT) nrerror("cf2 failed in bessjyH); 
gam=(p-f)/q; 
rjmu=sqrt(w/((p-f)*gam+q)); 
rjmu=SIGN(rjmu,rjl); 
rymu=rjmu*gam; 
iymup=rymu*(p+q/gam); 
ryl=xmu*xi*iymu-rymup; 

> 
fact=rjmu/rjl; 
rj=rjll*fact; 
rjp=rjpl*fact; 
for (i=l;i<=nl;i++) { 

rytemp=(xmu+i)*xi2*ryl-rymu; 
rymu=ryl; 
ryl=rytemp; 

} 
ry=rymu; 
ryp=xnu*xi*rymu-ryl; 

assign6essels(&tempBessels, rj, ry, rjp, ryp); 

return tempBessels; 

} 

void beschb(double x, double *gaml, double *gam2, double *gampl, double *gammi) 
{ 

double chebev(double a, double b, double cFJ, int m, double x); 
double xx; 
static double clQ = { 

-1.142022680371172e0,6.516511267076e-3, 
3.08709017308e-4,-3.470626964e-6,6.943764e-9, 
3.6780e-ll,-1.36e-13}; 

static double c2Q = { 
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1.843740587300906e0,-0.076852840844786e0, 
1.271927136655e-3,-4.971736704e-6,-3.3126120e-8. 
2.42310e-10,-1.70e-13,-1.0e-15}; 

xx=8.0*x*x-1.0; 
*gaml=chebev(-1.0,1.0,cl,NUSEl,xx); 
*gam2=chebev(-l .0,1.0,c2,NUSE2,xx); 
*gampl= *gam2-x*(*gaml); 
*gammi= *gam2+x*(*gaml); 

} 

double chebev(double a, double b, double c[], int m, double x) 
{ 

void nrerror(char errorJextQ); 
double d = 0.0, dd = 0.0, sv, y, y2; 
intj; 

if ((x-a)*(x-b) > 0.0) nrerror("x not in range in routine chebev"); 
y2 = 2.0*(y=(2.0*x-a-b)/(b-a)); 
for(j = m-l;j>=l;j-){ 

sv = d; 
d = y2*d-dd + c[j]; 
dd = sv; 

} 
return y*d-dd + 0.5*c[0]; 

} 

#undefEPS 
#undefFPMIN 
#undefMAXIT 
#undefXMIN 
#undefPI 
#undefNRANSI 

#undefNUSEl 
#undefNUSE2 

#undefRTPI02 
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APPENDIX J.   ANSI C CODE FOR LEVIN ALGORITHM OPERATING ON 
EXTINCTION EFFICIENCY FACTOR 

/* Thesis Program for applying the Levin method on the extinction efficiency factor and determining */ 
/* the resulting rate of convergence */ 
/* LT Brian Johnson */ 
/* Compiler: Borland C++ Ver. 5.0 */ 
/* File Name: mielevin.c */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <stddef.h> 
#include <math.h> 
#include "nrutil.h" 
#include "nrutil.c" 
#defineNRANSI 
#defineEPS1.0e-10 
#defineFPMIN1.0e-30 
#define MAXIT 10000 
#define XMTN 2.0 
#defme PI 3.141592653589793 
#define RTPI02 1.2533141 
#defmeNUSE15 
#defmeNUSE2 5 
#defme MAX 1036 

struct bessVec { 
double rj, ry, rjp, ryp; 

}; 

struct complex { 
double real, imag; 

}; 

void assignBessels(struct bessVec* besselsPtr, double rjdummy, double rydummy, double rjpdummy, 
double rypdummy) 
{ 

besselsPtr -> rj = rjdummy; 
besselsPtr -> ry = rydummy; 
besselsPtr -> rjp = rjpdummy; 
besselsPtr -> ryp = rypdummy; 

} 

struct bessVec sphbes(double, int); /* Function Prototype */ 
struct bessVec bessjy(double, double); /* Function Prototype */ 

double levin(); /* Function Prototype */ 
double bico(int, int); /* Function Prototype */ 
double factln(int); /* Function Prototype */ 
double gammln(double); /* Function Prototype */ 

struct bessVec sphBesselsn; 
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struct bessVec besselsnPlusHalf; 
struct bessVec besselsnMinusHalf; 
stract complex an, b_n; /* Mie coefBcients */ 
struct complex zetan; 
struct complex zetanMinusl; 
struct complex denom; /* denominator in Mie coefficients */ 

double x = 1000.0; /* size parameter */ 
double m = 2.0; /* refractive index (non-absorbing spheres) */ 
double JnMinusHalf, JnPlusHalf; 
double Afactor; 
double psinMinusl; /* Ricatti-Bessel fh 1st kind, initialized */ 
double psin; 
double chin; /* Ricatti-Bessel fh 2nd kind */ 
double nOverx; 
double aBraces, bBraces; 
double numer; /* numerator in Mie coefficients */ 
double realDenom; /* rationalized denominator */ 
double sumQextOld, sumQext, Q_ext;     /* Extinction efficiency factor */ 
double T[MAX+1], t[MAX+l]; 
double a; 

int n = 0; /* loop counter, also order of bessel function */ 
intmArrayt] = {1.25, 1.33, 1.44, 1.50, 1.55, 2.0}; 
intk; 

mainO 
{ 
T[0] = t[0] = 0.0; 
n = 0; 
printf("\n\ni T_i t_i P[i]/Q[i]\nB); 

bessels_nPlusHalf = bessjy(m*x, 0.5); /* initialize for Afactor */ 
J_nPlusHalf = besselsnPlusHalf.rj; 

psin = sin(x); 
zeta_n.real = psin; /* initializing zeta */ 
zeta_n.imag = cos(x); 

sum_Qext = 0.0; 

while (n<=MAX) 
{ 
n = n+l; 
J_nMinusHalf = J_nPlusHalf; 
psinMinusl = psin; 
zetanMinusl = zetan; 
sumQextOld = sumQext; 

besselsnPlusHalf = bessjy(m*x, n + 0.5);       /* calculating A factor */ 
JnPlusHalf = besselsnPlusHalf.rj; 
A_factor = (J_nMinusHalf7J_nPlusHalf) - (n/(m*x)); 
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sphBesselsjn = sphbes(x, n);        /* j's and y's for Ricatti Bess fn's */ 
psi_n = x * sphBessels_n.rj; 
chin = -x * sphBessels_n.ry; 
zetan.real = psin; 
zeta_n.imag = chin; 

nOverx = n/x; 
aBraces = (A factor / m + nOverx); 
bBraces = (Afactor * m + nOverx); 

numer = aBraces*psi_n - psinMinusl; 

denom.real = (aBraces * zeta_n.real) - zetanMinusl.real; 
denomimag = (aBraces * zeta_n.imag) - zeta_nMinusl.imag; 
realDenom = (denom.real*denom.real + denom.imag*denom.imag); 

a_n.real = (numer * denom.real)/realDenom; 
a_n.imag = (numer * denom.imag)/realDenom; 

numer = bBraces*psi_n - psi_nMinusl; 

denom.real = (bBraces * zeta_n.real) - zetanMinusl.real; 
denom.imag = (bBraces * zeta_n.imag) - zeta_nMinusl.imag; 
realDenom = (denom.real*denom.real + denom.imag*denom.imag); 

b_n.real = (numer * denom.real)/realDenom; 
b_n.imag = (numer * denom.imag)/realDenom; 

t[n] = 2.0/(x*x)*(2*n + l)*(a_n.real + b_n.real); 
T[n] = T[n-l] + t[n]; 

} /* end while loop */ 

a = levinO; 

printf("\nx = %3.2f m = %1.2f \n\n", x, m); 

return 0; 
} 

struct bessVec sphbes(doüble x, int n) 
{ 

struct bessVec tempsphbessels; 
struct bessVec bessels; 

double sj, sy, sjp, syp; 
void nrerror(char errortextrj); 
double factor, order; 

if (n < 0 || x <= 0.0) nrerror("bad arguments in sphbes"); 
order=n+0.5; 

bessels = bessjy(x,order); 
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} 

factor=RTPI02/sqrt(x); 
sj=factor*bessels.rj; 
sy=factor*bessels. ry; 
sjp=factor*bessels.rjp-(sj)/(2.0*x); 
syp=factor*bessels.ryp-(sy)/(2.0*x); 

assignBessels(&tempsphbessels, sj, sy, sjp, syp); 

return tempsphbessels; 

struct bessVec bessjy(double x, double xnu) 
{ 

void nrerror(char error_text[]); 

struct bessVec tempBessels; 

double rj, ry, rjp, ryp; 

voidbeschb(double x, double *gaml, double *gam2, double *gampl, 
double *gammi); 

int i,isign,l,nl; 
double a,b,br,bi,c,cr,ci,d,del,dell,den,di,dlr,dli,dr,e,f,fact,fact2, 

fact3,ff,gam,gaml,gam2,gammi,gampl,h,p,pimu,pimu2,q,r,rjl, 
qll,rjmu,rjpl,rjpl,rjtemp,ryl,rymu,rymup,rytemp,sum,suml, 
temp,w,x2,xi,xi2,xmu,xmu2; 

if (x <= 0.0 || xnu < 0.0) nrerror("bad arguments in bessjy"); 
nl=(x < XMTN ? (int)(xnu+0.5) : IMAX(0,(int)(xnu-x+1.5))); 
xmu=xnu-nl; 
xmu2=xmu*xmu; 
xi=1.0/x; 
xi2=2.0*xi; 
w=xi2/PI; 
isign=l; 
h=xnu*xi; 
if (h < FPMTN) h=FPMIN; 
b=xi2*xnu; 
d=0.0; 
c=h; 
for(i=l;i<=MAXIT;i++) { 

b+=xi2; 
d=b-d; 
if (fabs(d) < FPMTN) d=FPMIN; 
c=b-1.0/c; 
if (fabs(c) < FPMTN) c=FPMTN; 
d=1.0/d; 
del=c*d; 
h=del*h; 
if (d < 0.0) isign = -isign; 
if (fabs(del-l.O) < EPS) break; 

} 
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if (i > MAXTT) nrerror("x too large in bessjy; try asymptotic expansion"); 
rjl=isign*FPMIN; 
rjpl=h*rjl; 
rjll=rjl; 
rjpl=rjpl; 
fact=xnu*xi; 
for (l=nl;l>=l;l~) { 

rjtemp=fact*rjl+rjpl; 
fact -= xi; 
rjpl==fact*rjtemp-rjl; 
rjl=rjtemp; 

} 
if(rjl==0.0)rjl=EPS; 
f=rjpl/rjl; 
if(x<XMIN){ 

x2=0.5*x; 
pimu=PI*xmu; 
fact = (fabs(pimu) < EPS ? 1.0 : pimu/sin(pimu)); 
d=-log(x2); 
e=xmu*d; 
fact2 = (fabs(e) < EPS ? 1.0 : sinh(e)/e); 
beschb(xmu,&gaml,&gam2,&gampl,&gammi); 
ff=2.0/PI*fact*(gaml*cosh(e)+gam2*fact2*d); 
e=exp(e); 
p=e/(gampl*PI); 
q=1.0/(e*PI*gammi); 
pimu2=0.5*pimu; 
fact3 = (fabs(pimu2) < EPS ? 1.0 : sin(pimu2)/pimu2); 
r=PI*pimu2*fact3*fact3; 
c=1.0; 
d=-x2*x2; 
sum=ff+r*q; 
suml=p; 
for (i=l;i<=MAXTT;i++) { 

ff=(i*ff+p+q)/(i*i-xmu2); 
c *= (d/i); 
p /= (i-xmu); 
q /= (i+xmu); 
del=c*(ff+r*q); 
sum += del; 
dell=c*p-i*del; 
suml += dell; 
if (fabs(del) < (1.0+fabs(sum))*EPS) break; 

} 
if (i > MAXTT) nrerror("bessy series failed to converge"); 
rymu = -sum; 
ryl = -suml*xi2; 
rymup=:xmu*xi*rymu-ryl; 
rjmu=w/(rymup-f*rymu); 

} else { 
a=0.25-xmu2; 
p=-0.5*xi; 
q=1.0; 
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br=2.0*x; 
bi=2.0; 
fact=a*xi/(p*p+q*q); 
cr=bH-q*fact; 
ci=bi+p*fact; 
den=br*br+bi*bi; 
dr=br/den; 
di = -bi/den; 
dlr=cr*dr-ci*di; 
dli=cr*di+ci*dr; 
temp=p*dlr-q*dli; 
q=p*dli+q*dlr; 
p=temp; 
for (i=2;i<=MAXTT;i++) { 

a+=2*(i-l); 
bi+=2.0; 
dr=a*dr+br; 
di=a*di+bi; 
if (fabs(dr)+fabs(di) < FPMIN) dr=FPMIN; 
fact=a/(cr*cn-ci*ci); 
cr=br+cr*fact; 
ci=bi-ci*fact; 
if (fabs(cr)+fabs(ci) < FPMIN) cr=FPMTN; 
den=dr*dr+di*di; 
dr /= den; 
di /= -den; 
dlr=cr*dr-ci*di; 
dli=cr*di+ci*dr; 
temp=p*dlr-q*dli; 
q=p*dli+q*dlr, 
p=temp; 
if (fabs(dlr-1.0)+fabs(dli) < EPS) break; 

> 
if (i > MAXTT) nrerror("cf2 failed in bessjy"); 
gam=(p-f)/q; 
rjmu=sqrt(w/((p-f)*gam+q)); 
rjmu=SIGN(rjmu,rjl); 
rymu=rjmu*gam; 
rymup=iymu*(p+q/gam); 
tyl=xmu*xi*rymu-rymup; 

} 
fact=rjmu/rjl; 
rj=rjll*fact; 
rjp=rjpl*fact; 
for(i=l;i<=nl;i++){ 

rytemp=(xmu+i)*xi2*ryl-rymu; 
rymu=ryl; 
ryl=rytemp; 

} 
ry=iymu; 
ryp=xnu*xi*iymu-ry 1; 

assignBessels(&tempBessels, rj, ry, rjp, typ); 
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return tempBessels; 
} 

voidbeschb(double x, double *gaml, double *gam2, double *gampl, double *gammi) 
{ 

double chebev(double a, double b, double c[], int m, double x); 
double xx; 
static double cl[] = { 

-1.142022680371172e0,6.516511267076e-3, 
3.08709017308e-4,-3.470626964e-6,6.943764e-9, 
3.6780e-ll,-1.36e-13}; 

static double c2[] = { 
1.843740587300906e0,-0.076852840844786e0, 
1.271927136655e-3,-4.971736704e-6,-3.3126120e-8, 
2.42310e-10,-1.70e-13,-1.0e-15}; 

xx=8.0*x*x-1.0; 
*gaml=chebev(-1.0,1.0,cl,NUSEl,xx); 
*gam2=chebev(-1.0,1.0,c2,NUSE2,xx); 
*gampl= *gam2-x*(*gaml); 
*gammi= *gam2+x*(*gaml); 

} 

double chebev(double a, double b, double c[], int m, double x) 
{ 

void nrerror(char errortextQ); 
double d = 0.0, dd = 0.0, sv, y, y2; 
intj; 

if ((x-a)*(x-b) > 0.0) nrerror("x not in range in routine chebev"); 
y2 = 2.0*(y=(2.0*x-a-b)/(b-a)); 
for(j = m-l;j>=l;j-){ 

sv = d; 
d = y2*d-dd + cöl; 
dd = sv; 

} 
return y*d - dd + 0.5*c[0]; 

} 

double levin() 
{ 
double P[MAX+1], Q[MAX+1]; 
double commonTerm; 
intN; 
P[0] = Q[0] = 0.0; 

for (N = 1; N <= MAX; N++) 
{ 
for(k=l;k<=N;k++) 
{ 
commonTerm = pow(-l,k)*pow(k,N-l)/t[k]*bico(N,k); 
P[k] = P[k-1] + commonTerm*T[k]; 
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Q[k] = Q[k-1] + commonTenn; 
} 
printf("\n%d %f    %f     %f ",k-1,T[N], t[N], P[N]/Q[NJ); 

} 
printf("\n\n"); 
return (P[MAX]/Q[MAX]); 

} 

double bico(int n, int k) 
{ double factln(int n); 

return floor(0.5+exp(factln(n)-factln(k)-factln(n-k))); 
} 

double factln(int n) 
{ double gammln(double xx); 

static double a[101]; 
if(n<=l) return 0.0; 
if (n <= 100) return a[n] ? a[n]: (a[n]=gammln(n+1.0)); 
else return gammln(n+1.0); 

double gammln(double xx) 
{ double x,y,tmp,ser; 

static double cof[6]={76.18009172947146,-86.50532032941677, 
24.01409824083091,-1.231739572450155, 
0.1208650973866179e-2,-0.5395239384953e-5}; 

intj; 
y=x=xx; 
tmp=x+5.5; 
top -= (x+0.5)*log(tmp); 
ser=1.000000000190015; 
for (j=0J<=5 j++) ser += cof[j]/++y; 
return -tmp+log(2.5066282746310005*ser/x); 

} 

#undefEPS 
#undefFPMIN 
#undefMAXTT 
#undefXMTN 
#undefPI 
#undefNRANSI 

#undefNUSEl 
#undefNUSE2 
#undefRTPI02 
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